Dose and time effect of CdTe quantum dots on antioxidant capacities of the liver and kidneys in mice
نویسندگان
چکیده
Although quantum dot (QD)-induced toxicity occurs due to free radicals, generation of oxidative stress mediated by reactive oxygen species (ROS) formation is considered an important mechanism. However, free radical mechanisms are essentially difficult to elucidate at the molecular level because most biologically relevant free radicals are highly reactive and short-lived, making them difficult to directly detect, especially in vivo. Antioxidants play an important role in preventing or, in most cases, limiting the damage caused by ROS. Healthy people and animals possess many endogenous antioxidative substances that scavenge free radicals in vivo to maintain the redox balance and genome integrity. The antioxidant capacity of an organism is highly important but seldom studied. In this study, the dose and time effects of CdTe QDs on the antioxidant capacities of the liver and kidneys were investigated in mice using the electron paramagnetic resonance (EPR) spin-trapping technique. We found that the liver and kidneys of healthy mice contain specific antioxidant capacities that scavenge ·OH and ·O2-. Furthermore, oxidative stress markers (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], glutathione [GSH] and malondialdehyde [MDA]) were examined. In dose course studies, the free radical scavenging efficiencies of the liver and kidneys were found to gradually decrease with increasing concentration of CdTe QD exposure. The activities and levels of SOD, CAT, GPx and MDA were observed to increase in treated groups, whereas those of GSH were reduced. The time course studies revealed that the QD-induced antioxidant efficiency reduction was time dependent with GSH decrease and could recover after a period of time. These experimental results offer new information on QD toxicity in vivo. Specifically, CdTe QDs can deplete GSH to reduce the elimination ability of the liver and kidneys for ·OH and ·O2-, thus inducing oxidative damage to tissues.
منابع مشابه
Toxicity Comparative of CdSe:ZnS Quantum Dots on Testis, and Liver in Adult Mice
Quantum dots are new types of fluorescent materials for biological labeling. As a result, QDs toxicity study is an essential requirement for future clinical applications. Therefore, the cytotoxic CdSe:ZnS quantum dots effects on some organs in mice are presented in this study. In this work, 10, 20 and 40 mg/kg doses of CdSe:ZnS quantum dots were injected to 32 adult male mice. Structural and op...
متن کاملToxicity Comparative of CdSe:ZnS Quantum Dots on Testis, and Liver in Adult Mice
Quantum dots are new types of fluorescent materials for biological labeling. As a result, QDs toxicity study is an essential requirement for future clinical applications. Therefore, the cytotoxic CdSe:ZnS quantum dots effects on some organs in mice are presented in this study. In this work, 10, 20 and 40 mg/kg doses of CdSe:ZnS quantum dots were injected to 32 adult male mice. Structural and op...
متن کاملA Simple Image Analysis Method for Determination of Glucose by using Glucose Oxidase CdTe/TGA Quantum Dots
Glucose, as the major energy source in cellular metabolism, plays an important role in the natural growth of cells. Herein, a simple, rapid and low-cost method for the glucose determination by utilizing glucose oxidase and CdTe/thioglycolic acid (TGA) quantum dots (QDs) on a thin layer chromatography (TLC) plate has been described. The detection was based on the combination of the glucose enzym...
متن کاملSynthesis of CdTe quantum dots coated with biocompatible materials and investigation of their identification Properties
Fingerprint identification or dactyloscopy is a method for human identification. The impressions left by a human finger on surfaces are not visible to naked eyes (latent fingerprint); therefore, they require revelation to become visible and identified. Within the last century, several fingerprint revelation techniques such as optical, physical, and chemical were studied. These traditional metho...
متن کاملP-156: A Study about Toxicity of CdSe Quantum Dots on Male Sexual System of Mice and Controlling This Toxicity by ZnS Coverage in Immature Mice
Background: Quantum dots are commonly composed of cadmium contained semiconductors. Cadmium is potentially hazardous but toxicity of such quantum dots is not yet systematically investigated. On the other hand, in vitro studies have shown almost complete control of CdSe induced cytotoxicity by ZnS coverage. Toxicity of CdSe quantum dots and controlling this toxicity by ZnS coverage in immature m...
متن کامل